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A method is described for increasing the efficiency of numerical calculations of compressible 
fluid flow problems in which the pressure field is nearly uniform in space. This condition is 
ordinarily satisfied at low Mach number. It is shown that in such problems, the pressure 
gradient in the momentum equation may be multiplied by a scaling factor l/a* (a > 1) without 
significant effect, provided that a is not too large and that the pressure inhomogeneities are 
not of interest. This scaling modification reduces the acoustic speed by a factor of a, thereby 
increasing the effective Mach number by the same factor. This reduces the disparity between 
the acoustic and convective time scales, which improves the computational efficiency of many 
numerical schemes for compressible flow. The relation between the present approach and the 
a-transformation of O’Rourke and Bracco is briefly discussed. The practical utility of the 
method is illustrated by sample calculations of combustion in ideal gas mixtures. 0 1985 
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I. INTRODUCTION AND SUMMARY 

Numerical calculations of compressible fluid flow have a notorious tendency to 
be inefficient at low Mach numbers, because of the wide disparity that then exists 
between the time scales associated with convection and the propagation of acoustic 
waves. In explicit schemes, the inefficiency occurs because the time steps needed to 
satisfy the Courant sound-speed stability condition are much smaller than those 
needed to satisfy the convective stability condition alone. To alleviate this difficulty, 
partially implicit schemes (such as the ICE [ 1, 21 and related methods) are fre- 
quently employed. Such schemes remove the sound-speed stability condition so that 
larger time steps may be taken. The inefficiency in question then manifests itself in 
the additional computational labor needed to solve the resulting implicit system of 
equations on each time step. The solution is usually performed by iterative techni- 
ques. In some formulations, the inefficiency is aggravated by a tendency for the 
iteration scheme to converge more slowly as the Mach number is decreased, at least 
over a certain range of Mach numbers. Moreover, pointwise iteration schemes such 
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as the method of successive overrelaxation are inherently inefficient in problems 
where substantial changes in the overall pressure level occur, because long- 
wavelength errors relax very slowly. 

These considerations lead one to contemplate the possibility of devising methods 
for artificially increasing the Mach number to somewhat larger values, while still 
keeping it small in an absolute sense. One such method, called the cr-transfor- 
mation, was described by O’Rourke and Bracco [3]. Our purpose here is to 
present a closely related, but not quite equivalent, method for achieving the same 
objective. The present method is considerably simpler than the a-transformation, 
both conceptually and operationally, and it has the further advantage of being 
somewhat more widely applicable. It can easily be incorporated into any existing 
computer program for compressible fluid flow, with only trivial modifications. 

An obvious way to increase the Mach number is to reduce the acoustic speed c. 
The proper way to do so, however, is not immediately apparent. In the first place, c 
does not appear explicitly in the primitive form of the governing differential 
equations. By manipulating these equations in various ways, one can obtain various 
equivalent systems of equations in which c does appear explicitly, but they will no 
longer be equivalent if c is modified and it is not clear a priori which such for- 
mulation is to be preferred. And of course one is not simply free to arbitrarily select 
one of these formulations and reduce c therein; one is constrained by the 
requirement that the modification of c must not alter any of the solution features of 
interest. 

In the present method, the governing equations are modified in a very simple 
way: the pressure gradient in the momentum equation is multiplied by a scaling fac- 
tor l/a’, where CY > 1. We therefore refer to the method as the pressure gradient 
scaling, or PGS, method. One readily verities that this modification has the desired 
effect of reducing the effective acoustic wave speed by a factor of a. However, it 
might at first be expected to affect the solution in other ways as well, and therefore 
to be unacceptable. In particular, since the pressure gradient has no way of dis- 
tinguishing pressure inhomogeneities of acoustic origin from any other pressure 
inhomogeneities, one might expect to incur errors in accelerations, and hence in 
velocities, that are not merely acoustic in character. Fortunately, and perhaps sur- 
prisingly, this fear is not well founded. Physically, the saving grace is that the 
pressure gradients in a low Mach number flow are effectively determined by the 
velocity field, and not vice versa. The pressure gradients adjust themselves to 
whatever values are necessary for the velocity field to have the correct divergence 
(which in general is nonzero) [3,4]. The presence of the factor l/a2 merely causes 
these gradients to become larger by a factor of a2 in order to establish the same 
velocity field. 

The preceding remarks do not, of course, provide a firm justification for the PGS 
method; they are merely a plausibility argument. A systematic derivation of the 
method is presented in Section II. This derivation shows that the basic condition for 
the PGS method to be applicable is not that the Mach number be low per se, but 
rather that pressure inhomogeneities be negligible. Ordinarily, of course, these two 
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conditions are closely related [3], but the latter is really the more fundamental in 
the present context and will henceforth supersede the former. 

In contrast to the a-transformation of O’Rourke and Bracco [3], the PGS 
parameter a may be time dependent. It can therefore be adjusted during the course 
of a transient calculation to improve the overall efficiency. This adjustment is easily 
automated by monitoring the magnitude of the pressure inhomogeneities. One 
simply increases a when the pressure inhomogeneities are very small, and decreases 
a (subject to a lower bound of unity) when they threaten to become non-negligible. 
The automatic selection of a is discussed in Section III. 

The PGS method is suitable for use in conjunction with both explicit and implicit 
numerical schemes. The resulting gains in computational efficiency are more easily 
appreciated and estimated in the explicit case, where the time step is subject to the 
Courant sound-speed stability condition. The PGS method reduces the effective 
acoustic speed by a factor of a without changing the flow velocities. When the 
Mach number is small, therefore, the explicit time step may be increased by nearly 
a factor of a, and computational efficiency is thereby increased by the same factor. 
In implicit schemes, where the time step is not restricted by the acoustic speed, 
improvements in efficiency can also be substantial but will depend on the type of 
solution procedure used. In particular, point-relaxation schemes such as successive 
overrelaxation are in general expected to benefit significantly, as illustrated and dis- 
cussed in Section IV and the Appendix. 

The practical utility of the PGS method is illustrated in Section IV by presenting 
the results and computation times for two sample problems involving combustion 
in ideal gas mixtures. The numerical calculations were performed using the CON- 
CHAS-SPRAY computer code [5] both with and without the PGS method. 

After this work was completed, the related work of Lund [6] and Cundall [7] 
was brought to our attention. Lund has used a similar scaling in conjunction with 
an implicit numerical scheme for one-dimensional flow with chemical reactions, but 
he scales in the opposite direction. That is, he effectively sets a < 1 to make the 
acoustic speed larger rather than smaller, so that acoustic waves are reduced in 
amplitude and pressure equilibration occurs more quickly. This is of course per- 
fectly legitimate, provided that pressure inhomogeneities are small and that one’s 
implicit scheme is constituted, as Lund’s evidently is, in such a way that solution 
inefficiencies do not arise as the Mach number is decreased. However, Lund did not 
himself justify the procedure, which in our view requires one to show (as we do in 
Section II) that features other than pressure inhomogeneities are not sensibly 
altered by the scaling. 

Cundall [7] has used a scaling procedure which seems similar in spirit to the 
PGS method, but in a rather different context. He is concerned with quasistatic 
problems in solid mechanics and fluid seepage. The scaling is applied to the density 
of the solid material and to the bulk modulus of the fluid. The procedure is 
heuristically motivated, but a systematic derivation analogous to that of Section II 
is not given. 

Cundall’s work illustrates the important point that scaling procedures analogous 
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to the PGS method are likely to prove useful in a variety of problems where widely 
different time scales exist. It must be emphasized, however, that a legitimate scaling 
procedure will not in general result from time step stability considerations alone, for 
one can easily construct incorrect scaling procedures which allow the use of larger 
time steps by doing violence to the features of interest. It is essential in every case to 
show that these features are preserved unchanged by the proposed scaling, and to 
confirm this behavior by direct numerical calculations. 

II. DERIVATION OF THE SCALING 

The governing equations for compressible fluid flow may be written in the form 

DPi 
-=-piV.U+ Ri, Dt 

Pg= -vp+s, 

where pi is the partial mass density of chemical species i, p is the total mass density, 
u is the fluid velocity, p is the pressure, e is the thermal internal energy per unit 
mass, and D/Dt = d/at + u. V is the convective derivative. The source terms Q, Ri, 
and S represent the effects of molecular transport and rate processes (e.g., viscosity, 
diffusion, and chemical reactions), as well as any external forces or heat and mass 
sources that may be present. Explicit forms for Q, Ri, S, and the state function f 
will not be given, as they are immaterial for our purposes. 

In what follows we shall consider various modifications of the above system of 
equations. None of these modifications will affect Eq. (1 ), so this equation will hen- 
ceforth be omitted from consideration. It will simply be understood that Eq. (1) is 
to be included unchanged in any modified equation system to be considered below. 

It is useful to define the spatially uniform average pressure level by 

m=$wr, t), (5) 

where the integration extends over the volume of the system under consideration. If 
the system is unbounded, the limit V + co is taken; jj will then ordinarily reduce to 
the specified ambient pressure. The local deviation of the pressure from p(t) is 

p’(r, t) = p(r, t) - At), (6) 
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whose volume average is zero. In terms of p and p’, Eqs. (2~(4) become 

p$= -Vp’+S, 

p$= -(P+p’)V.u+Q, 

P+ P’=f({Pil3 e). 

(7) 

(8) 

(9) 

We are concerned with problems in which lp’l is everywhere much less than p. 
Then provided that no interest attaches to the small pressure inhomogeneities 
themselves (or to the associated small variations in u, e, and the pi), p’ may be 
neglected in comparison to p in any term to which both contribute. Therefore p’ 
may be neglected in Eqs. (8) and (9) but not in Eq. (7). We thereby obtain the 
modified equation system 

Du 
Pz= -VP’ + s, 

pg=-jWu+Q, 

(10) 

(11) 

li=f(I~~l,e), (12) 

which will exhibit the same behavior as the original system of Eqs. (7t(9) except 
with regard to the negligibly small variations, 

In the modified system of Eqs. (lo)-( 12) the momentum equation is no longer 
cou$ed to the energy and state equations through p’. This decoupling changes the 
character of the system: the modified system of Eqs. (lOk(12) does not support 
acoustic waves. Since p’ now appears only in Eq. (lo), the determination of p’ is 
now an elliptic problem. One may regard p’ as being implicitly determined by 
Eq. (12) which is a local constraint on e and the pi. This constraint is equivalent to 
a constraint on V. II, as can be seen by applying D/Dt to Eq. (12) and combining 
the result with Eqs. (1) and (11) [3,4]. Thus the pressure field appearing in the 
momentum equation is implicitly determined by a constraint on V. u, just as in 
incompressible flow. 

The modified system of Eqs. (lOk(12) has the peculiar feature that it appears to 
be underdetermined, since it contains the additional unknown function p(t) for 
which no determining equation appears. However, this difficulty is illusory; it is 
resolved by the realization that p(t) is effectively determined by the boundary con- 
ditions [3]. (The situation is closely analogous to parabolic flow in a closed duct, 
where the streamwise pressure variation is effectively determined by the boundary 
conditions on the duct walls [8-lo]. These boundary conditions, however, are 
often disguised as an integral mass conservation condition [9, lo].) Indeed, the 
boundary conditions may be used to derive an explicit equation for dp/dt [3], but 
this will not be done here as we shall have no need for such an equation. 
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Equations (lo)-( 12) incorporate the simplification of neglecting p’ in comparison 
to p. However, the numerical solution of these equations necessitates the use of an 
implicit scheme to allow for the elliptic character, and this is usually quite time-con- 
suming. It also requires the derivation and use of an explicit equation for dp/dt as 
discussed above. This can of course be done [ 11, 121, but it entails the develop- 
ment of a numerical scheme and computer program specifically tailored to the pur- 
pose, which then cannot be used for a wider class of compressible flow problems. 
We prefer to pursue a somewhat more flexible approach which can easily be 
implemented as an option in existing general purpose compressible flow numerical 
schemes and computer programs. To this end, we proceed to obtain a second 
modified system of equations which is closer in form to the original system and 
which can be solved by explicit techniques if desired. Alternatively, if an iterative 
implicit scheme is used, as in Section IV, the iteration convergence rate will 
frequently be substantially greater than that for a similar scheme applied to 
Eqs. ( lo)-( 12) (see Appendix). 

To obtain such a system, we further exploit the fact that lp’j is everywhere much 
less than p, but now we use this knowledge not to remove p’ but to reintroduce it 
in a propitious way. Simply stated, the basic idea is that since p’ is small, cr*p’ will 
also be small provided that CC* is not too large. Therefore, for a certain range of c1 
values, p may be replaced by p+ IX*@ in Eqs. (11) and (12) with negligible effect. 
We thereby obtain a second modified equation system, 

p+$ -Vp’+S, (13) 

p&p -(p+a*p’)V.U+Q, (14) 

P+ ~2P”f({Pi}~ e). (15) 

Here c1 is taken to be independent of position, although it may still depend on time. 
The system of Eqs. (13 )-( 15) can be rewritten in a more convenient form by defin- 
ing 

fi(r, t) = p(t) + a*(t) p’(r, t). (16) 

Thus Vfi = LX* Vp’ and we obtain 

ug= -&+s, a 

Pg= -@V-u+Q, 

(17) 

B =f({Pi)3 e). (19) 

We now observe that Eqs. (17&-( 19) look just like the original Eqs. (2) - (4), except 
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that p is replaced by @ (which is just a change of symbols) and a factor of l/a’ now 
appears in front of the pressure gradient in the momentum equation. We have 
therefore shown that, provided small perturbations such as acoustic waves are not 
of interest, a factor of l/a2 can be affixed to the pressure gradient with negligible 
effect. It is natural to refer to this modification as pressure gradient scaling (PGS). 

Of course, by introducing p’ back into the energy and state equations we have 
restored acoustic waves to the system, but we have falsified their speed to our 
advantage. (At the same time, we have artificially increased their amplitude because 
the compressibility of the fluid has effectively been increased.) A conventional 
linearized analysis, with Q, Ri, and S taken to be zero, shows that the acoustic 
wave speed is artificially reduced by a factor of ~1, so that the effective Mach number 
is artificially increased by a factor of a. This increase is the desired effect of the PGS 
procedure, from which the increased computational efficiency results. 

The preceding derivation is of a physical rather than a mathematical nature, and 
clearly does not constitute a rigorous proof that solutions of Eqs. (17)-( 19) will be 
close to corresponding solutions of Eqs. (2~(4). However, the derivation is fully 
satisfactory from a physical point of view, as it involves only the assumed 
negligibility of p’ in comparison to p. The expectation that PGS will not 
significantly alter the solution receives further support from the observation that 
solutions of the fluid dynamics equations in general appear to vary continuously 
with Mach number [13]. 

It should be noted that the quantity p’ appearing in Eqs. (13)-(16) depends 
implicitly upon ~1, even though this has not been indicated by the notation. Thus p’ 
in Eqs. (13)-( 16) differs both from the original p’ of Eqs. (2)-(4) and from the ellip- 
tic p’ of Eqs. (lOt(12), although all of them may be expected to be of the same 
order of magnitude. These differences are of no concern, however, since p’ is not 
itself of interest. 

The fundamental condition for the validity of the PGS procedure is that a2p’ be 
everywhere much less than p. That is, the maximum absolute deviation of p from p 
should be much less than unity, say 0.01. This condition may be used to select a(t) 
automatically during the course of a calculation, as discussed in Section III. Of 
course, this requires evaluation of p, which may be obtained from 

w,=dj drb(r, I). 
V 

Strictly speaking, since p’ now differs from the original p’ its volume average need 
not be identically zero, and hence this p may differ slightly from the original p. 
However, this difference is at most of order a”p’/j& and is therefore not significant. 

The fact that the PGS method is implemented simply by affixing a factor of l/a2 
to the pressure gradient in the momentum equation is a consequence of our use of a 
transport equation for the internal energy e rather than the total energy E = e + fu’. 
Unlike the internal energy equation, the total energy equation contains a term 
involving the pressure gradient (namely, u. VP), and strictly speaking the factor of 
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l/a2 should be affixed to this term as well. (This can be seen either by repeating the 
above development with Eq. (3) replaced by the total energy equation, or 
equivalently by combining the final PGS equations (17) and (18) to obtain the 
PGS equation for E.) In practice, however, this modification is not really necessary, 
because at low Mach number $~*$e so that Ege. This in turn implies that the 
term u. Vp in the total energy equation is negligible compared to the other terms 
and therefore need not be scaled. (The same conclusion emerges from a more for- 
mal similarity analysis of the transport equation for E, along the lines of Ref. [3]. 
Such an analysis shows that the term u. Vp, when expressed in terms of the 
appropriate dimensionless variables, appears with a coefficient of the Mach number 
squared and therefore vanishes as the Mach number tends to zero.) Thus, even 
when the transport equation for E is used instead of that for e, the PGS method 
may effectively be implemented by scaling Vp in the momentum equation only. 

We have mentioned that the PGS method is closely related, but not quite 
equivalent, to the a-transformation of O’Rourke and Bracco [3]. The precise 
relation between the two methods may be established as follows. In the a-transfor- 
mation, the calculation of interest is performed with each independent and depen- 
dent variable 4 replaced by a corresponding scaled variable c$*. The scaled and 
unscaled variables are connected by simple relations involving a, which are given in 
Eq. (20) of Ref. [3]. The relation for p* deserves special mention because p and p’ 
are scaled differently: p* = p whereas p’* = a2p’, so that p* = p + a2p’. After the 
calculation is completed, the resulting d* are converted back to the desired 4 by use 
of the scaling relations. 

To see what equations are effectively being solved by this procedure, it is simply 
necessary to replace each variable 4 in the governing Eqs. (l)-(4) by its 
corresponding 4*, and then to algebraically eliminate the 4* in favor of the 4 by 
means of the scaling relations. In order to do this, the explicit forms of the source 
terms Q, R,, and S must be specified. If these terms are taken to have the forms 
given in Ref. [3], one finds that the equations which are effectively being solved by 
use of the a-transformation are identical to our Eqs. (1) and (13)-( 15) except that 
the viscous dissipation term in Q is multiplied by a factor of a2. Thus the a-transfor- 
mation has the same effect on acoustic waves and pressure inhomogeneities as the 
PGS method, but it has the additional effect of artificially increasing the viscous 
dissipation rate by a factor of CC’. However, viscous dissipation is ordinarily 
negligible at low Mach number [3], so this difference is expected to be unimpor- 
tant in practice. 

The a-transformation and the PGS method will therefore produce essentially 
equivalent results for the same fixed value of a, but they are significantly different in 
regard to convenience and generality. In both respects the PGS method is to be 
preferred. It is simpler to use because it eliminates the need to scale and unscale 
variables, and it is more general in that it allows the use of a time-dependent scaling 
parameter a. Moreover, it is somewhat more widely applicable by virtue of the fact 
that its validity does not depend on the form of the source functions Q, Ri, and S. 

We remark parenthetically that the PGS method can readily be extended to cer- 
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tain situations in which the pressure is significantly nonuniform but differs only 
slightly from a known nonuniform pressure p. whose gradient is balanced by a 
term in S. The obvious example of such a situation is low-speed flow in a 
gravitational field, where p. may be identified with the hydrostatic pressure. A 
straightforward generalization of the present development shows, as one would 
intuitively expect, that only the deviation of Vp from Vp, should be scaled by 1/cc2. 
That is, the proper implementation of the PGS method in such problems is to 
replace Vp by Vp, + (1/a2) V(p - po) in the momentum equation. The result of 
course reduces to Eq. (17) when p. is uniform. 

The PGS method can also be extended to certain flows at low Mach number in 
which an essential role is played by pressure inhomogeneities of an elliptic rather 
than an acoustic character. Examples of such flows are low-speed flows driven by a 
pressure drop, or pressure drag on an obstacle immersed in a low-speed flow. Such 
pressure inhomogeneities are clearly represented correctly in the intermediate ellip- 
tic equations (lo)-( 12). Their relation to the PGS pressure field may be inferred by 
examining the elliptic approximation to the PGS equations (17)-(19) which is 
obtained by replacing p with p in Eqs. (18) and (19). Comparison with Eqs. 
(lo)-(12) then shows that the elliptic pressure inhomogeneities in @ are simply ~1~ 
times the true elliptic pressure inhomogeneities. The PGS method can therefore be 
applied in problems where such pressure inhomogeneities are significant simply by 
scaling the pressure differences by a factor of CI’. For example, the appropriate 
pressure drop to impose as a boundary condition on a PGS calculation would be 
a2 times the physical pressure drop. Similarly, the physical pressure drag on an 
obstacle would be l/a2 times the pressure drag calculated using PGS. 

III. AUTOMATIC SELECTION OF c( 

Since CI is allowed to depend on time in the PGS method, it is natural to try to 
devise an automatic selection algorithm which will appropriately adjust CI in accor- 
dance with the pressure inhomogeneities that are found to exist at different times 
during a calculation. This of course requires an arbitrary decision as to the value of 
a2 1 p’l/p above which the pressure inhomogeneities are no longer considered small. 
For purposes of discussion we shall take this value to be 0.01, but we emphasize 
that this is a subjective decision to be made by the user in the context of the par- 
ticular problem under consideration. 

Based on Eq. (16) and a cutoff value of 0.01, an obvious prescription for selecting 
CI would be 

(21) 

where the “max” operation is performed with respect to all cells of the finite dif- 
ference mesh, and the superscripts n and n + 1 refer to the time level as usual. (It is 
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understood, of course, that any such prescription is subject to a lower bound of 
unity for CI”+ ’ .) However, this prescription does not limit the amount by which 
a n+l differs from an, and in the absence of such a limit c1 may develop artificial 
oscillations in time. The naive prescription of Eq. (21) is therefore not recommen- 
ded. 

A better prescription results from the idea that c1 should relax toward the value 
given by Eq. (21) with a relaxation time that is not allowed to become too short. 
This idea may be implemented by writing 

a flfl - a” aLa;f+I 

At =- z ’ (22) 

where a;; + l denotes the value of a” + ’ that would be obtained by the naive prescrip- 
tion of Eq. (21), At is the time step t”+’ - t”, and the relaxation time z has yet to be 
specified. It seems natural to identify r with the pressure equilibration time for the 
system, which may be estimated as the round-trip transit time for an acoustic wave 
to traverse the length L of the region of interest. We therefore set r = 2La”/c, where 
c is a representative true (unscaled) sound speed. Equation (22) then becomes 

a 
“+~I”“=~[(man.P:P,,)“2- 11, (23) 

which again is subject to a lower bound of unity for a”+ ‘. This prescription has 
been found to work well in practice, and was used in the sample calculations to be 
discussed in the next section. 

IV. SAMPLE CALCULATIONS 

The PGS method has been proof-tested in a number of calculations using the 
CONCHAS-SPRAY computer program [S]. In this section we describe the per- 
tinent features of CONCHAS-SPRAY and how we have modified the program to 
include the PGS method. Then we describe the results of one- and two-dimensional 
calculations performed with and without the PGS method. Large computational 
time-savings were realized using the PGS method because the number of iterations 
was reduced for a given value of the computational time step. The reason for this 
reduction is analyzed in the Appendix. Acceptably accurate results were obtained 
using a value of 0.01 for the allowable ratio of pressure fluctuation amplitude to 
mean pressure. 

CONCHAS-SPRAY solves the two-dimensional, unsteady equations of motion 
for a chemically reacting mixture of ideal gases interacting with a vaporizing, single- 
component fuel spray. The program utilizes the ICE method [l, 21, in which those 
terms associated with acoustic wave motion are differencecl implicitly. These are the 
pressure gradient terms in the momentum equations, and the term associated with 



PRFSSURE GRADIENT SCALING METHOD 371 

dilatation (V. u #O) in the mass (and, if desired, energy) equation. A pointwise 
iterative method similar to successive overrelaxation is used to solve the implicit 
finite difference equations. Use of the ICE method obviates the need to observe the 
Courant sound-speed stability condition, and CONCHAS-SPRAY computes its 
time step internally based on convective and diffusional stability criteria, on a 
maximum growth factor per cycle, and on the number of iterations required for 
convergence of the iteration procedure. If the number of iterations on a given cycle 
excedes a parameter ITMIN (usually taken to be twenty) then the time step is not 
allowed to increase on the next cycle. If the number of iterations exceeds a 
parameter ITMAX (usually taken to be fifty) then the time step on the next cycle is 
reduced by a factor of 0.75. 

To implement the PGS method in CONCHAS-SPRAY, we simply updated the 
value of a using Eq. (23) and then divided the finite difference approximations to 
the pressure gradient terms in the momentum equations by tl*. The time step 
criteria based on the number of iterations were retained using the values 
ITMIN = 20 and ITMAX = 50. 

Both test problems involve the calculation of premixed flames. A flame, or 
deflagration, is a wave or front in which there are exothermic chemical reactions 
and which propagates subsonically relative to the fluid ahead of it [14]. The 
pressures are nearly uniform in flame propagation problems, which therefore serve 
as excellent test cases for the PGS method. In describing the test problems we will 
give in detail only those computational parameters and results that relate to the use 
and validation of the PGS method. 

The first test problem was to compute the flame speed of a steady, one-dimen- 
sional, hydrogen-air flame. An initial guess was made for the flame structure, con- 
sistent with the known conditions far upstream and downstream of the flame, and 
the steady state was then computed as the long-time limit of a transient process. 
The flame was kept stationary by adjusting the prescribed inflow velocity upstream 
of the flame so that the mass flow rate of reactant equaled its rate of consumption 
in the flame. The value of this inflow velocity is the computed flame speed. At the 
downstream outflow boundary, the pressure was prescribed. The heat and mass dif- 
fusivities were taken to be constant and a single-step global chemical reaction was 
used to represent hydrogen oxidation. 

Using the standard CONCHAS-SPRAY program, a calculated flame speed of 
17.21 + .02 cm/set was obtained after 15 set of problem time. This required 16.3 min 
of computer time on a CRAY-1 computer. The calculated flame speed exhibited 
small oscillations about the mean value, and the above error bounds were inferred 
from the most recent maximum and minimum values prior to termination of the 
calculation. The final computational time step was limited to a value of 
1.04 x 10e3 set by the ITMIN parameter. 

When the same problem was run with the PGS method, a calculated flame speed 
of 16.95 f .68 cm/set was obtained after 15 set of problem time and 1.20 min of 
computer time. The oscillations in the flame speed here were larger than in the stan- 
dard calculation because of the higher-amplitude acoustic waves. The final time step 
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MAX=230. CM/S MAX=239.CM/S 

ISOTHERMS 

MAX=1468 K 
MIN=350 K 

MAX=1463 K 
MIN=350 K 

HYDROGEN 
MASS FRACTION 

CONTOURS 

MAX=9.37 x IO 
-3 

MAX=9.37 x 10 
-3 

MIN=O. 0 MIN=O.O 

FIG. 1. Computer-generated plots of velocity vectors, hydrogen mass-fraction contours, and 
isotherms in the CONCHAS-SPRAY (left) and PGS (right) calculations. 
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of 1.06 x lop2 set was determined by the diffusional stability condition. This was an 
order of magnitude larger than in the standard calculation. The steady value of c1 in 
this calculation was 120. 

In order to reduce the amplitude of the computed acoustic waves in the previous 
problem, we repeated the calculation changing only the maximum allowed ratio of 
the pressure fluctuations to the mean pressure. This ratio was lowered from 0.01 to 
0.002. A computed flame speed of 16.89 f .06 cm/set was then obtained after 15 set 
of problem time and 1.25 min of computer time. The time step was again 
1.06 x 1O-2 set and the steady value of c1 was 60.0. Lowering the allowed pressure 
inhomogeneities reduced the flame speed oscillations without significantly changing 
the computational time, which was still more than an order of magnitude smaller 
than in the standard CONCHAS-SPRAY calculation. The resulting flame speed 
differed by two percent from the value obtained in the standard calculation, 
probably because of the truncation errors associated with the use of a larger time 
step in the PGS calculation. 

The second test problem was a two-dimensional calculation of the unsteady bur- 
ning of a hydrogen-air mixture in a closed, spherical volume. Again we give only 
the computational parameters and results that are relevant to the use and 
validation of the PGS method. A more detailed description of some related 
problems is given elsewhere [15]. 

Use of the PGS method reduced the computer time for this test problem by more 
than a factor of two. The standard CONCHAS-SPRAY calculation took 37.0 min 
of CRAY-1 computer time, while the PGS calculation took 15.9 min. The ratio of 
allowed pressure fluctuations to the mean pressure in the PGS calculation was 0.01. 
In both calculations the time step was limited by ITMIN, but in the PGS 
calculation this limitation did not occur until the time step was a factor of two or 

0 5 IO 

TIME(s) 

FIG. 2. Pressure histories obtained in the two-dimensional CONCHAS-SPRAY (solid line) and 
PGS (dashed line) calculations. 



374 RAMSHAW, O’ROURKE, AND STEIN 

more larger than in the standard calculation. The value of a in the PGS calculation 
varied considerably in response to the changes in the dynamic state of the fluid. 

The computational results agreed very closely. Shown in Fig. 1 are computer- 
generated plots of velocity vectors, hydrogen mass-fraction contours, and isotherms 
at an intermediate time in both calculations. Given below the plots are the com- 
puted maximum fluid speeds and the highest and lowest hydrogen mass-fractions 
and temperatures. It can be seen that none of the comparable values differ by more 
than four percent. Similar agreement was seen at other times in the calculations. 
Figure 2 shows the pressure histories obtained in the two calculations; the differen- 
ces in pressure are seen to be less than four percent at any given time. 

APPENDIX 

Here we analyze the effect of PGS on the convergence rate of successive 
overrelaxation (SOR) in a simple one-dimensional problem with Dirichlet boun- 
dary conditions. The analysis is worked out in some detail, thereby explicitly 
exhibiting the increase in asymptotic convergence rate as a function of a. Similar 
results can also be derived in more than one dimension and for different boundary 
conditions. The SOR scheme considered here is essentially the same as that used in 
CONCHAS-SPRAY [S]; the only difference is that the implicit equations solved 
iteratively in CONCHAS-SPRAY are actually weakly nonlinear, and this non- 
linearity is neglected here. 

The asymptotic rate of convergence R” of an iteration scheme is defined by 
R” = -In p(G), where p(G) is the spectral radius of the iteration matrix G 
associated with the scheme [16]. The rate R m is approximately the reciprocal of 
the number of iterations required to reduce the solution error by a factor of e-i. 
Thus better iteration schemes have larger values of R”. 

An examination of the CONCHAS-SPRAY iteration scheme [S] for a one- 
dimensional problem with Dirichlet boundary conditions, in which the density and 
sound speed are uniform, shows that the linearized system being solved is Ax = 6, 
where A is the symmetric tridiagonal matrix with elements A,,= 1 +2/s’ and 
Ai,i+l=Ai+l,i= - l/s2, all other elements being zero, E = a Ax/c At, Ax is the cell 
width, At is the time step, and c is the true (unscaled) sound speed; the source vec- 
tor b is immaterial for present purposes. The associated Jacobi iteration matrix GJ 
is [ 161 G:,,+ i = Gj, ,,r = (2 +8*)-l, all other elements being zero, and its eigen- 
values are [16] &=2(2+$)’ cos (iota) (i= l,..., N), where a= (N+ 1))’ and N 
is the number of computational cells. The spectral radius of GJ is therefore 
p J = 2(2 + a2) - ’ cos (w). The corresponding spectral radius for Gauss-Seidel 
iteration is [ 161 pGS = p:, while that for SOR with optimal relaxation factor is 
Cl61 PSOR= (1 - r)/( 1 + r) where r = (1 - p2)l/‘. 

Unfortunately, however,‘one rarely uses &R with the optimal relaxation factor, 
so it would be unfair to evaluate R” using pSOR. It is reasonable, however, to sup- 
pose that R” lies between the values it would have for Gauss-Seidel iteration and 
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optimal SOR iteration. These values are readily obtained from ~os and psoR above, 
and when E and a are small we obtain 

REs = 2 ln( 1 + fs’) + ~*a* 

and 

R&R = 2(& + RU). 

Two interesting observations may now be made. First, as a increases so does E, 
and the convergence rates Rgs and RF& increase accordingly. This exhibits the 
improvement in convergence rate that occurs when the PGS method is used in the 
present context. Second, we note that a decreases as N increases, so that the con- 
vergence rates worsen as the resolution is increased. However, they do not worsen 
below the positive lower bounds obtained by setting a =O. (Ordinarily At will 
vanish at least as rapidly as Ax, so E will remain constant or perhaps even increase 
as N + co.) In contrast, as N + co (a + 0) in an incompressible calculation, where 
E = 0, the convergence rates tend to zero. 
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